(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
logarithm(x) → ifa(lt(0, x), x)
ifa(true, x) → help(x, 1)
ifa(false, x) → logZeroError
help(x, y) → ifb(lt(y, x), x, y)
ifb(true, x, y) → help(half(x), s(y))
ifb(false, x, y) → y
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
lt(0', s(x)) → true
lt(x, 0') → false
lt(s(x), s(y)) → lt(x, y)
logarithm(x) → ifa(lt(0', x), x)
ifa(true, x) → help(x, 1')
ifa(false, x) → logZeroError
help(x, y) → ifb(lt(y, x), x, y)
ifb(true, x, y) → help(half(x), s(y))
ifb(false, x, y) → y
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
lt(0', s(x)) → true
lt(x, 0') → false
lt(s(x), s(y)) → lt(x, y)
logarithm(x) → ifa(lt(0', x), x)
ifa(true, x) → help(x, 1')
ifa(false, x) → logZeroError
help(x, y) → ifb(lt(y, x), x, y)
ifb(true, x, y) → help(half(x), s(y))
ifb(false, x, y) → y
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
Types:
lt :: 0':s:1':logZeroError → 0':s:1':logZeroError → true:false
0' :: 0':s:1':logZeroError
s :: 0':s:1':logZeroError → 0':s:1':logZeroError
true :: true:false
false :: true:false
logarithm :: 0':s:1':logZeroError → 0':s:1':logZeroError
ifa :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError
help :: 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
1' :: 0':s:1':logZeroError
logZeroError :: 0':s:1':logZeroError
ifb :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
half :: 0':s:1':logZeroError → 0':s:1':logZeroError
hole_true:false1_0 :: true:false
hole_0':s:1':logZeroError2_0 :: 0':s:1':logZeroError
gen_0':s:1':logZeroError3_0 :: Nat → 0':s:1':logZeroError
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
lt,
help,
halfThey will be analysed ascendingly in the following order:
lt < help
half < help
(6) Obligation:
Innermost TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
logarithm(
x) →
ifa(
lt(
0',
x),
x)
ifa(
true,
x) →
help(
x,
1')
ifa(
false,
x) →
logZeroErrorhelp(
x,
y) →
ifb(
lt(
y,
x),
x,
y)
ifb(
true,
x,
y) →
help(
half(
x),
s(
y))
ifb(
false,
x,
y) →
yhalf(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
Types:
lt :: 0':s:1':logZeroError → 0':s:1':logZeroError → true:false
0' :: 0':s:1':logZeroError
s :: 0':s:1':logZeroError → 0':s:1':logZeroError
true :: true:false
false :: true:false
logarithm :: 0':s:1':logZeroError → 0':s:1':logZeroError
ifa :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError
help :: 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
1' :: 0':s:1':logZeroError
logZeroError :: 0':s:1':logZeroError
ifb :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
half :: 0':s:1':logZeroError → 0':s:1':logZeroError
hole_true:false1_0 :: true:false
hole_0':s:1':logZeroError2_0 :: 0':s:1':logZeroError
gen_0':s:1':logZeroError3_0 :: Nat → 0':s:1':logZeroError
Generator Equations:
gen_0':s:1':logZeroError3_0(0) ⇔ 0'
gen_0':s:1':logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:1':logZeroError3_0(x))
The following defined symbols remain to be analysed:
lt, help, half
They will be analysed ascendingly in the following order:
lt < help
half < help
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lt(
gen_0':s:1':logZeroError3_0(
n5_0),
gen_0':s:1':logZeroError3_0(
+(
1,
n5_0))) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
lt(gen_0':s:1':logZeroError3_0(0), gen_0':s:1':logZeroError3_0(+(1, 0))) →RΩ(1)
true
Induction Step:
lt(gen_0':s:1':logZeroError3_0(+(n5_0, 1)), gen_0':s:1':logZeroError3_0(+(1, +(n5_0, 1)))) →RΩ(1)
lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
logarithm(
x) →
ifa(
lt(
0',
x),
x)
ifa(
true,
x) →
help(
x,
1')
ifa(
false,
x) →
logZeroErrorhelp(
x,
y) →
ifb(
lt(
y,
x),
x,
y)
ifb(
true,
x,
y) →
help(
half(
x),
s(
y))
ifb(
false,
x,
y) →
yhalf(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
Types:
lt :: 0':s:1':logZeroError → 0':s:1':logZeroError → true:false
0' :: 0':s:1':logZeroError
s :: 0':s:1':logZeroError → 0':s:1':logZeroError
true :: true:false
false :: true:false
logarithm :: 0':s:1':logZeroError → 0':s:1':logZeroError
ifa :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError
help :: 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
1' :: 0':s:1':logZeroError
logZeroError :: 0':s:1':logZeroError
ifb :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
half :: 0':s:1':logZeroError → 0':s:1':logZeroError
hole_true:false1_0 :: true:false
hole_0':s:1':logZeroError2_0 :: 0':s:1':logZeroError
gen_0':s:1':logZeroError3_0 :: Nat → 0':s:1':logZeroError
Lemmas:
lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s:1':logZeroError3_0(0) ⇔ 0'
gen_0':s:1':logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:1':logZeroError3_0(x))
The following defined symbols remain to be analysed:
half, help
They will be analysed ascendingly in the following order:
half < help
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
half(
gen_0':s:1':logZeroError3_0(
*(
2,
n342_0))) →
gen_0':s:1':logZeroError3_0(
n342_0), rt ∈ Ω(1 + n342
0)
Induction Base:
half(gen_0':s:1':logZeroError3_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
half(gen_0':s:1':logZeroError3_0(*(2, +(n342_0, 1)))) →RΩ(1)
s(half(gen_0':s:1':logZeroError3_0(*(2, n342_0)))) →IH
s(gen_0':s:1':logZeroError3_0(c343_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
logarithm(
x) →
ifa(
lt(
0',
x),
x)
ifa(
true,
x) →
help(
x,
1')
ifa(
false,
x) →
logZeroErrorhelp(
x,
y) →
ifb(
lt(
y,
x),
x,
y)
ifb(
true,
x,
y) →
help(
half(
x),
s(
y))
ifb(
false,
x,
y) →
yhalf(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
Types:
lt :: 0':s:1':logZeroError → 0':s:1':logZeroError → true:false
0' :: 0':s:1':logZeroError
s :: 0':s:1':logZeroError → 0':s:1':logZeroError
true :: true:false
false :: true:false
logarithm :: 0':s:1':logZeroError → 0':s:1':logZeroError
ifa :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError
help :: 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
1' :: 0':s:1':logZeroError
logZeroError :: 0':s:1':logZeroError
ifb :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
half :: 0':s:1':logZeroError → 0':s:1':logZeroError
hole_true:false1_0 :: true:false
hole_0':s:1':logZeroError2_0 :: 0':s:1':logZeroError
gen_0':s:1':logZeroError3_0 :: Nat → 0':s:1':logZeroError
Lemmas:
lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
half(gen_0':s:1':logZeroError3_0(*(2, n342_0))) → gen_0':s:1':logZeroError3_0(n342_0), rt ∈ Ω(1 + n3420)
Generator Equations:
gen_0':s:1':logZeroError3_0(0) ⇔ 0'
gen_0':s:1':logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:1':logZeroError3_0(x))
The following defined symbols remain to be analysed:
help
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol help.
(14) Obligation:
Innermost TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
logarithm(
x) →
ifa(
lt(
0',
x),
x)
ifa(
true,
x) →
help(
x,
1')
ifa(
false,
x) →
logZeroErrorhelp(
x,
y) →
ifb(
lt(
y,
x),
x,
y)
ifb(
true,
x,
y) →
help(
half(
x),
s(
y))
ifb(
false,
x,
y) →
yhalf(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
Types:
lt :: 0':s:1':logZeroError → 0':s:1':logZeroError → true:false
0' :: 0':s:1':logZeroError
s :: 0':s:1':logZeroError → 0':s:1':logZeroError
true :: true:false
false :: true:false
logarithm :: 0':s:1':logZeroError → 0':s:1':logZeroError
ifa :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError
help :: 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
1' :: 0':s:1':logZeroError
logZeroError :: 0':s:1':logZeroError
ifb :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
half :: 0':s:1':logZeroError → 0':s:1':logZeroError
hole_true:false1_0 :: true:false
hole_0':s:1':logZeroError2_0 :: 0':s:1':logZeroError
gen_0':s:1':logZeroError3_0 :: Nat → 0':s:1':logZeroError
Lemmas:
lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
half(gen_0':s:1':logZeroError3_0(*(2, n342_0))) → gen_0':s:1':logZeroError3_0(n342_0), rt ∈ Ω(1 + n3420)
Generator Equations:
gen_0':s:1':logZeroError3_0(0) ⇔ 0'
gen_0':s:1':logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:1':logZeroError3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
logarithm(
x) →
ifa(
lt(
0',
x),
x)
ifa(
true,
x) →
help(
x,
1')
ifa(
false,
x) →
logZeroErrorhelp(
x,
y) →
ifb(
lt(
y,
x),
x,
y)
ifb(
true,
x,
y) →
help(
half(
x),
s(
y))
ifb(
false,
x,
y) →
yhalf(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
Types:
lt :: 0':s:1':logZeroError → 0':s:1':logZeroError → true:false
0' :: 0':s:1':logZeroError
s :: 0':s:1':logZeroError → 0':s:1':logZeroError
true :: true:false
false :: true:false
logarithm :: 0':s:1':logZeroError → 0':s:1':logZeroError
ifa :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError
help :: 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
1' :: 0':s:1':logZeroError
logZeroError :: 0':s:1':logZeroError
ifb :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
half :: 0':s:1':logZeroError → 0':s:1':logZeroError
hole_true:false1_0 :: true:false
hole_0':s:1':logZeroError2_0 :: 0':s:1':logZeroError
gen_0':s:1':logZeroError3_0 :: Nat → 0':s:1':logZeroError
Lemmas:
lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
half(gen_0':s:1':logZeroError3_0(*(2, n342_0))) → gen_0':s:1':logZeroError3_0(n342_0), rt ∈ Ω(1 + n3420)
Generator Equations:
gen_0':s:1':logZeroError3_0(0) ⇔ 0'
gen_0':s:1':logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:1':logZeroError3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
logarithm(
x) →
ifa(
lt(
0',
x),
x)
ifa(
true,
x) →
help(
x,
1')
ifa(
false,
x) →
logZeroErrorhelp(
x,
y) →
ifb(
lt(
y,
x),
x,
y)
ifb(
true,
x,
y) →
help(
half(
x),
s(
y))
ifb(
false,
x,
y) →
yhalf(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
Types:
lt :: 0':s:1':logZeroError → 0':s:1':logZeroError → true:false
0' :: 0':s:1':logZeroError
s :: 0':s:1':logZeroError → 0':s:1':logZeroError
true :: true:false
false :: true:false
logarithm :: 0':s:1':logZeroError → 0':s:1':logZeroError
ifa :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError
help :: 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
1' :: 0':s:1':logZeroError
logZeroError :: 0':s:1':logZeroError
ifb :: true:false → 0':s:1':logZeroError → 0':s:1':logZeroError → 0':s:1':logZeroError
half :: 0':s:1':logZeroError → 0':s:1':logZeroError
hole_true:false1_0 :: true:false
hole_0':s:1':logZeroError2_0 :: 0':s:1':logZeroError
gen_0':s:1':logZeroError3_0 :: Nat → 0':s:1':logZeroError
Lemmas:
lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s:1':logZeroError3_0(0) ⇔ 0'
gen_0':s:1':logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:1':logZeroError3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s:1':logZeroError3_0(n5_0), gen_0':s:1':logZeroError3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)